

Hengshui Snowate Environmental Technology Co., Ltd.

— One-Stop Water treatment solutions provider —

www.snowate.com

Snowate

One-Stop Water treatment solutions provider

Quality Control

Raw Material Inspection

ØH-	M.A. 1993/1999	200	Trianes.	1
	proper terms	£111	Tire.	
91 1174	Sept. Sec. 81	Table 1	-	
2122				-7
Series .	11660		b#	
Anne	- 10	lines.		
- bank			7	
	pate	0.08	TOU	118
246-0	\$61-610 LOS 18-50		4.69	119
100.04	del récolus se se		519	.18
W/H00-1-04	R108111 H-9		1,00	118
	sort role; on he re-	00100	99-78	19
MET STATE OF THE STATE OF	MO1001101 M10	100	1.794	240
1410	arties	And, tremely		- 00
BERGE STATE OF STATE STATE OF STATE STA			3 A A	9

		企期报告 Ruport	E	
PERSONAL PROPERTY.	HELDERS.		814.81	× .
Street Service	19	1955	#89K 10	7
MARKS.	1000,0000	F5.	bho.	7
Tree	T100 (100 cm)	22.52	-	Ť
6249	bearing v	Marin port		₹.
Section.	.145-44.7	-220/25-	and the same of	÷
170m	emanuation:	Charle		4
	**********	Terror	010001908510	ŀ
March 14 March 14 MARCH 15				
9645		BRUE Makes		Т.
STORY OF	-	1758.85		1
38.0513	into:	68000		٠.
peglodf.	100	Stages Activities	Settles	1
Epite.	SHIPS MAKE	Freedy	40	73
	14			10
manufacture Total		AMBE AND	Tanner Miles	1
Townson	make			1
CTC#SA.	20000			1
1437	88 - C. 8886 A 14	***	Alter	1
Rent.	9900 Managar	1000	T A F	
91				3

Production Supervision

Final Product Inspection

Package Inspection

CONTENTS ____

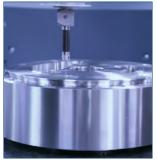
High Pressure Pump and Energy Recovery	05
CNP Pumps	06
Civil Pumps	07
Ion Exchange Resin	08
Snowate FRP Tanks	09
RUNXIN® Valves	10
Filter Cartridges and Filter Bag	11
SS Filter Housings	12
Plastic Filter Housing	13
Automatic Self Cleaning Filters	14
UF Membranes	15
RO Membranes	18
FRP RO Housing	20
SS RO Housings	21
Coupling, Groove Pipe and Blind Cap	22
Process Automation Instruments	24
Create Water Quality Online Analysis Instruments	25
Imported Brand Instruments	26
Automatic Control	27
Dosing Pump	28

UV Water Purifier and Sterilizer	29
Ozone Generator	30
Sodium Hypochlorite Generator	31
EDI (Electrodeionization)	32
Plastic Valves and Pipe Fittings	33
Metal Valves for Pipelines	34
Pressure Gauges	35
Solenoid Valve	35
Flow Meter	35
Stainless Steel Pipes and Fittings	36
Moving Bed Biofilm Reactor (MBBR)	38
Sewage Treatment Equipment	38
SS and Carbon Steel Tanks	39
Product Application Cases	40
Our Clients	41

High Pressure Pump and Energy Recovery

High Pressure Pump

- Replaceable with Danfoss.
- Main series: AHPP, AHPP W HC, ACLP 674/675, APHT, APHT G.
- 10000 hours warranty.
- Compact, lightweight, and low noise.
- Maximum flow rate per unit: 150 m³/h, maximum pressure per unit: 95 MPa.
- Water lubricated, no oil stains. Saves 8% more energy than other oil and air-lubricated plunger pumps.
- Constant flow rate unaffected by pressure fluctuations.


Energy Recovery

- Replaceable with Danfoss.
- Main series: iERD, iMPE.
- 10000 hours warranty.
- Maximum flow rate per unit: 140 m³/h, half the size of ERI brand for the same flow rate.
- Integrates the pressure exchanger and motor into a compact unit, preventing energy exchanger stalling and seizure.
- Reserved intelligent control interface for adjusting concentrated water flow.
- Capable of recovering over 98% of hydraulic energy from the water stream, reducing high-pressure pump capacity, and significantly lowering operating costs.

CNP Pumps

CE

CNP's products include centrifugal pumps, variable frequency pumps, pipeline pumps, self-priming pumps, sewage pumps, end-suction pumps, submersible pumps, cooling tower pumps, and more. They are widely used in fields such as boosting, industry, water treatment, water supply, groundwater extraction, wastewater treatment, the chemical industry, and seawater desalination.

Civil Pumps

Civil pumps are divided into agricultural and commercial pumps. Agricultural pumps mainly include small submersible pumps, well submersible pumps, and land pumps. These products are widely used in agriculture, forestry, and livestock fields. Commercial pumps primarily consist of pipeline pumps, multistage pumps, and sewage pumps, and are mainly used in industrial production, residential life, urban and rural development, environmental protection, and water management.

Ion Exchange Resin

Resin Type Comparison Table **NSF**

Snowate	Purolite	Rohm& Haas		Dow Dowex	Dover	Cubron	Mitaubiek
Resin	Purolite	Amberlite	Duolite	Dow Dowex	Bayer	Sybron	Mitsubis
ation Exch	ange Resin						
001x4		IRA118					SK104
001x7Na	C-100E	IR-120 PLUS		HCR-S(E)S	S-100LF	C-240	
001x7H	C-100H	IR-120H	C-20H		S-100LF(H)	C-242	
001X8	C-100	IR-120	C-20/225	HCR-S(E)	S-100	C-249	SK1B
001x10	C-100X10	IR-122	C-20X10/255	HCR		C-250	SK110
D001	C-150/155	AMB200/IR-252	C-26S	MSC-1	SP-120	CFP-110	PK-228
D113H	C-104	IRC-76/86	C-464	MAC-3	CNP-80	CCP	WK-20
SXC-9		A21/15Dry					
201x4	A-400	IRA-402	A-113	SBR-P	M-504	ASB-P	SA12A
201x7	A-600	IRA-400	A-109	SBR-C	M-500	ASB-1	SA10A
D201	A-500	IRA-900	A-161	MSA-1	MP 500	A-641	PA-312
D202	A-510	IRA-910	A-162	MSA-2	MP-600	A-651	PA-412
D301G	A100E	IRA93/95/96		MWA-1	MP 64		WA 30
D311	A-845	IRA-67			AP 49		WA 10/1
lixed Bed	Resin						
MB400	NRW-37	IRN150	ARM-381	MR-3			MI-7000
lacroporou	us Adsorption	Resin					
D101		XAD-2					HP-20
AB-8		XAD-4					HP-21

We offer a variety of types and specifications of ion exchange resins to meet the needs of different industries and applications. Our products are known for their excellent performance, stability, and reliability. They undergo strict quality control to ensure outstanding performance in various applications.

Purolite Resin

Snowate FRP Tanks

RUNXIN® Valves

NSF (ROHS [ACS UKCA

Common Product Models

F56E1-2	F67B1	N75Q1	F79B-LCD	F69A3	N77A1	F88A	F99A1
F56E1-1	F67B3	N77B1	F63C1	F69G1	N77A3	F118A	F99D1
F56E2-2	F67B1-A	F67P1	F63C3	F97B3	F112A1	F118B	F130A1
F56E2-1	F67C1	F71P1	F63I3	F117A1	F112A3	F98A	F130A3
F56EC	F67C3	F112B1	F63B1	F117Q1	F63P1	F92A1-LED	F111A1
F56EC-2	F67Q1	F96B1	F63B3	F117Q3	F63P3	F92A1-LED/70F	F111A3
F56A1	F67Q3	F99B1	F63D1	F116Q1	F65P1	F92B1-LED	F112C3
F56A2	F67D1	F111B1	F63D3	F116Q3	F116A1	F92B1-LED/70F	F79A-LCD
F56AC	F67M	F64A1	F65B1	F68C1	F116A3	F92A3-LED	F79B-LCD
F56F1	F71B1	F64A2	F65B3	F68Q1	F117A3	F92E3-LED	F79A-LED
F56F2	F71Q1	F64AC	F65P3	F68Q3	F116A3/F70AL	F82A/B-LCD	F79B-LED
F56KY	F71Q3	F64B	F65G1	F69Q1	F116E3-LED	F82A/B-LED	F79A-LCD/F70D
F56L	F71G1	F64BC	F68C3	F69Q3	F133A1	F95A3	F79B-LCD/F70D
N56D1	F134A1	N64D	F68A3	F69P1	F99A3	F95B1	F79A-LED/F70D
N56D2	N75A1	N64F	F68D1	N74A1	F73	F95C1	F79B-LED/F70D
F77BS	N75A3	F77AS	F68D3	N74A3	F135	F95C3	F142A1
F112BS	N75B1	F112AS	F69A1	N74B1	F137	F95D1	F142A3

Filter Cartridges and Filter Bag

FILTER CARTRIDGE SERIES:

Length: 10", 20", 30", 40", 60"; Diameter: 2.5", 4.5", 6"

Filter rating: 0.1, 0.22, 0.45, 1, 3, 5, 10, 20, 25, 30, 40, 50, 60, 70, 75, 100 µm;

Type: melt blown; string wound; pleated; activated carbon filter cartridge and high flow filter cartridge

FILTER BAG SERIES:

Filter rating: 0.5-500 µm;

Material: PP, PE, NMO, PTFE, SS, LCR Oil Adsorption filter bag;

SIZE: 1#(180*430MM); 2#(180*810MM); 3#(105*230MM);

4#(105*380MM); 5#(150*560MM)

SS Filter Housings

SS CARTRIDGE FILTER HOUSING:

• Cartridge qty: 3-120 elements

• Cartridge Length: 10", 20", 30", 40"

• Thickness: 1.5, 1.8, 2, 2.5, 3, 4, 5, 6mm

• Sanitary filters and high flow filters are available.

SS BAG FILTER HOUSING:

• Filter bags: 1#; 2#; 3#; 4#

• Thickness: 1.5, 2, 2.5, 3, 4, 5, 6mm

• Filter type: single-bag filter (clamp type, flat cap, top-in), multi-bag filter

Surface polishing or sandblast finishing.

Material: SUS304, SUS316L.

In/Out: NPT/BSP Threaded, ANSI Flange, sanitary clamp.

Plastic Filter Housing

UPVC/PP/PVDF Bag Filter Housing:

1# filter bag, 2# filter bag

UPVC Melt Blown Cartridge Filter Housing:

3 elements, 5 elements, 8 elements, 9 elements

UPVC/PP/PVDF High Flow Cartridge Filter Housing:

for 20", 40" High Flow Cartridge

HIGH FLOW SKID PACKAGE UNITS

Automatic Self Cleaning Filters

Internal & External scraping self-cleaning filter
Fully Automatic Cleaning and Sewage Discharge
Multi-Precision Customized Filtering Element
Imported Reducer

UF Membranes

Hollow Fiber UF Membrane

Specialized in PVDF UF Membrane, using advanced NIPS production process, the product is characterized by good hydrophilicity and high tensile strength. Replacement models available for DuPont, Hydranautics, Hyflux, SUEZ, Toray, Asahi Kasei and more. It has been widely used in the United States, Canada, Australia, Brazil, Argentina, Chile and many other countries.

		UF Repla	cement Mod	el Chart		
Туре	Brand	Equivalent Model	Snowate Series No.	Replacement Model	Hollow Fiber Material	Membrane Surface Area(m²)
		SFP-2860/SFD-2860/ SFP-2860XP/SFD-2860XP		SWUFD8964-51	PVDF	51
		SFP-2880/SFD-2880/ SFP-2880XP/SFD-2880XP		SWUFD8983-77	PVDF	77
	DOW	SFP-2660/SFD-2660	SWUFD	SWUFD6563-33	PVDF	33
		IP-51/IPD-51/IP-51XP/IPD- 51XP		SWUFD8966-51	PVDF	51
		IP-77/IPD-77/IP-77XP/IPD- 77XP		SWUFD8986-77	PVDF	77
	Suez	ZeeWeed 1500	SWUFS	SWUFS7069-55	PVDF	55.7
	Hydranautics	HYDRAcap MAX 40		SWUFH9844-52	PVDF	52
		HYDRAcap MAX 60	SWUFH	SWUFH9863-78	PVDF	78
UF		HYDRAcap MAX 80		SWUFH9883-105	PVDF	105
		K600ER		SWUFX1083-55	PVDF	55
	Hyflux	K600ET-0820 & ETUF-9060R	SWUFX	SWUFX1392-60	PVDF	60
	TIYIIUX	K600ETI-55	SWULX	SWUFX1392-55	PVDF	55
		K600ETI-32		SWUFX1363-32	PVDF	32
		K600ETN		SWUFX1346-23	PVDF	23
	Asahi KASEI	UHA-620C	SWUFA	SWUFA6475-50	PVDF	50
	TORAY	HFUG-2020AN	SWUFT	SWUFT8567-90	PVDF	90
	IUNAI	HFU-2020N	SWUFI	SWUFT8567-72	PVDF	72
	MANN +HUMMEL	UA860-HP	SWUFUA	SWUFUA860-HP	PVDF	45

Advantages

- Technical R&D headquarters in USA and China
- All raw materials come from high quality manufacturers, and testing is conducted to ensure product quality.
- Finished products are 100% air-tightness tested and water-tested, with protective fluid.
- Regular products are in stock to ensure timely delivery.
- NSF certification
- Had water treatment industry cases in the United States, Canada, Italy, Mexico, Australia and other parts of the world.

Spinning

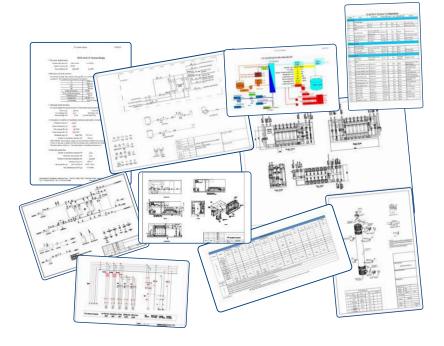
Membrane

UF Module Assembly

UF Module

Module Test

Package


UF Membranes

Technical Support

For your specific project conditions and requirements, we can provide customized technical solutions to ensure that your system design and operation are optimized. Our services include, but are not limited to: UF membrane installation drawings, UF system configuration sheets, design proposals and calculations, process flow diagrams, P&ID drawings, UF operation sequences, electrical wiring diagrams, equipment and piping layout diagrams, etc.

Our goal is to provide services that exceed expectations, offering you thoughtful technical support. We look forward to collaborating with you to develop efficient and sustainable water treatment solutions.

Application Cases

High quality membrane products and excellent technical services have successfully accumulated lots of application project cases, such as power plants, sea water desalination, electronic industries, drinking water, municipal water, landfill leachates, domestic sewage, electroplating wastewater, slaughterhouse wastewater, etc.

UF Membranes

Hollow Fiber MBR module

MBR modules are made with reinforced hollow fiber PVDF membrane. The hollow fibers have high tensile strength with excellent chemical resistance. 0.1/0.03 µm pore size provides superior rejection rate of suspended solids, bacteria and viruses. *Equivalent modules can be customized on customers' request.

Features

- PVDF Membrane Material
- Conventional models, and MITSUBISHI, MEMSTAR, SUEZ replacement models are available.
- Membrane area per sheet: 10-45 m²
- Reinforced hollow fibers by unique NIPS technology. High Strength.

		MBR F	Replacem	ent Model Chai	rt	
Туре	Brand	Brand Equivalent Model Series No.		Replacement Model	Hollow Fiber Material	Membrane Surface Area(m²)
		SMM-1015T		SWB1V4022-15M	PVDF	15
	Memstar	SMM-1522T		SWB1V5022-22M	PVDF	22
		SMM-2030T		SWB1V8022-30M	PVDF	30
MBR	MITSUBISHI	SADF2590A	SWB1V-I	SWB1V7849-30I	PVDF	30
		71//	SWB3V-S	SWB3V8633-31S	PVDF	31.6
	Suez	ZeeWeed 500D		SWB3V8633-34S	PVDF	34.4
				SWB3V8633-40S	PVDF	40.9

PTFE Flat sheet MBR

PTFE-MBR Flat Sheet Modules are made of highly hydrophilic PTFE membrane fiber, which have excellent chemical resistance and high hydrophilicity, With 0.2 μm filtration pore size, it has excellent retention effects on impurities such as solid particles, colloidal suspensions, and bacteria. Compared to traditional treatment processes and PVDF MBR membrane products, PTFE-MBR Flat Sheet modules have the advantages of small footprint, better effluent quality, longer service life, and stronger chemical cleaning tolerance.

Features

- Hydrophilic PTFE membrane material ensures best chemical resistance and anti-fouling performance.
- No backwash needed and easy maintenance.
- Suitable for critical wastewater such as landfill leachate, chemical wastewater etc.
- Retrofit modules are available for replacement projects.

Application Cases

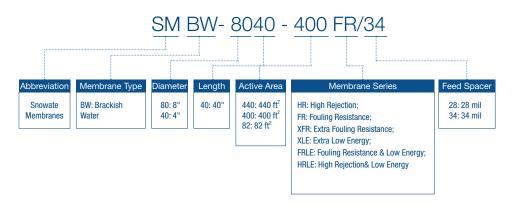
RO Membranes

Snowate R0 membranes are made from imported raw materials and production equipment, and are available in a wide range of product models, meet the needs of different customers.

Advantages

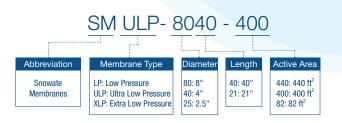
- No oxidation post-treatment, resistant to chemical cleaning, with good recovery and stable performance.
- SW series membranes have high salt rejection, high flux, and high boron rejection, suitable for municipal and irrigation water.
- BW anti-fouling series membranes are suitable for conditions requiring frequent cleaning, supporting over 60 cleaning cycles.
- Proven replacement cases with Dow and Toray, with stable performance close to the original brands.

Application Cases


Seawater Desalination RO Membrane Performance Specifications

		Active Area	Flux	Min.	Stablized	Stabilized Boron		Test Conditions	
Туре	Membrane Model	ft² (m²)	gpd (m³/d)	Rejection Rate (%)	Rejection Rate (%)	Rejection Rate (%)	Pressure psi (MPa)	Solution NaCl (ppm)	Recovery (%)
HR	SM SW-8040-400HR	400 (37.2)	6,500 (24.5)	99.65	99.80	92.0			
пк	SM SW-4040-82HR	82 (7.6)	1,320 (5)	99.60	99.75	/			
	SM SW-8040-400XLE	400 (37.2)	9,000 (34)	99.60	99.80	92.0			8
XLE	SM SW-8040-440XLE	440 (41)	9,750 (37)	99.60	99.80	92.0			
	SM SW-4040-82XLE	82 (7.6)	1,660 (6.3)	99.60	99.65	/			
	SM SW-8040-400HRLE	400 (37.2)	7,400 (28)	99.65	99.80	92.0	000 (5.5)	00.000	
HRLE	SM SW-8040-440HRLE	440 (41)	7,900 (30)	99.65	99.80	92.0	800 (5.5)	32,000	
	SM SW-4040-82HRLE	82 (7.6)	1,600 (6.1)	99.60	99.70	/			
HRFR	SM SW-8040-400HRFR/34	400 (37.2)	7,400 (28)	99.65	99.80	92.0			
	SM SW-8040-400XHR	400 (37.2)	6,100 (23)	99.70	99.82	92.0			
XHR	SM SW-8040-440XHR	440 (41)	6,600 (25)	99.70	99.82	92.0			
	SM SW-4040-82XHR	82 (7.6)	1,180 (4.5)	99.60	99.75	/			

RO Membranes



Industrial Brackish Water RO Membrane Performance Specification

		Antina Anna	Fl	Min.	Obstallered		Test Conditions	
Туре	Membrane Model	Active Area ft² (m²)	Flux gpd (m³/d)	Rejection Rate (%)	Stablized Rejection Rate (%)	Pressure psi (MPa)	Solution NaCl (ppm)	Recovery (%)
	SM BW-8040-400HR	400 (37.2)	11,350 (43)	99.4	99.7			15
HR	SM BW-8040-440HR	440 (41)	12,560 (48)	99.4	99.7]	2,000	
	SM BW-4040-82HR	82 (7.6)	2,250 (8.6)	99.3	99.5			
FR	SM BW-8040-400FR/34	400 (37.2)	11,100 (42)	99.35	99.5	225 (1.55)		
FK	SM BW-4040-82FR/34	82 (7.6)	2,000 (7.6)	99.3	99.5]		
XFR	SM BW-8040-400XFR/34	400 (37.2)	11,350 (43)	99.4	99.6			
AFK	SM BW-4040-82XFR/34	82 (7.6)	2,050 (7.8)	99.4	99.6			
	SM BW-8040-400XLE	400 (37.2)	12,550 (47.5)	98.0	99.0		5) 500	
XLE	SM BW-8040-440XLE	440 (41)	14,000 (53)	98.0	99.0	125 (0.86)		
	SM BW-4040-82XLE	82 (7.6)	2,400 (9.1)	98.0	99.0			
EDI E	SM BW-8040-400FRLE/34	400 (37.2)	10,500 (40)	99.1	99.3			
FRLE	SM BW-4040-82FRLE/34	82 (7.6)	1,900 (7.2)	99.0	99.3]		
	SM BW-8040-400HRLE	400 (37.2)	11,350 (43)	99.1	99.3	150 (1.03)	1500	
HRLE	SM BW-8040-440HRLE	440 (41)	12,560 (48)	99.1	99.3			
	SM BW-4040-82HRLE	82 (7.6)	2,250 (8.5)	99.0	99.3	1		

Brackish Water Membrane Performance Specification

		Active Area ft² (m²)	Flux gpd (m³/d)	Min.	Stablized	Test Conditions		
Туре	Membrane Model			Rejection Rate (%)	Rejection Rate (%)	Pressure psi (MPa)	Solution NaCl (ppm)	Recovery (%)
I.D.	SM LP-4040-82	82 (7.6)	2,250 (8.6)	99.3	99.6	005 (4.55)	0.000	45
LP	SM LP-8040-400	400 (37.2)	11,100 (42)	99.3	99.6	225 (1.55)	2,000	15
	SM ULP-4040-82	82 (7.6)	2,250 (8.6)	2,250 (8.6) 99.0 99.5				
ULP	SM ULP-8040-400	400 (37.2)	11,350 (43)	99.0	99.5	150 (1.03)	1,500	15
	SM ULP-8040-440	440 (41)	12,650 (48)	99.0	99.5			
	SM XLP-4040-82	82 (7.6)	2,220 (8.4)	98.0	99.0			
XLP	SM XLP-8040-400	400 (37.2)	11,900 (45)	98.0	99.0	100 (0.69)	500	15
	SM XLP-8040-440	440 (41)	13,200 (50)	98.0	99.0	1		

Commercial Membrane Performance Specification

Туре	Membrane Model	Active Area ft ² (m ²)	Flux gpd (m³/d)	Min. Rejection Rate (%)	Stablized Rejection Rate (%)	Test Conditions		
						Pressure psi (MPa)	Solution NaCl (ppm)	Recovery (%)
	SM SW-2540-28HR	28 (2.6)	580 (2.2)	99.55	99.7		32,000	8
	SM SW-4021-33HR	33 (3.1)	660 (2.5)	99.55	99.65	800 (5.5)		5
Commercial	SM SW-2521-12HR	12 (1.1)	240 (0.9)	99.5	99.6			5
Seawater Desalination	SM SW-2540-28HRLE	28 (2.6)	680 (2.6)	99.5	99.65			8
	SM SW-4021-33HRLE	33 (3.1)	790 (3)	99.5	99.6			5
	SM SW-2521-12HRLE	12 (1.1)	290 (1.1)	99.4	99.55	1		5

Snowate FRP RO Housing

8 inch (1-8 elements)

End port	Side port		
300 psi	300 psi		
450 psi	450 psi		
600 psi	600 psi		
1000 psi	1000 psi		
1200 psi	1200 psi		
1500 psi	1500 psi		
1800 psi	1800 psi		
2000 psi	2000 psi		

4 inch (1-7 elements)

End port	Side port
300 psi	300 psi
450 psi	450 psi
600 psi	600 psi
1000 psi	1000 psi
1200 psi	1200 psi
1500 psi	1500 psi
1800 psi	1800 psi
2000 psi	2000 psi

2.5 inch (1 element)

End port
300 psi
1000 psi

SS RO Housings

8 inch (1-6 elements)

Side port

300 psi

300 psi 600 psi 1000 psi

4 inch sanitary grade

(1-4 elements)

Side port

400 psi

8 inch sanitary grade

(1-6 elements)

Side port

600 psi 1000 psi

2.5 inch

(1 element)

Side port **End** port

250 psi 250 psi 1000 psi

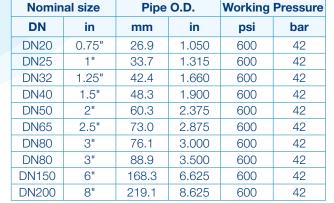
4 inch

(1-4 elements)

End port Side port 250 psi 250 psi 1000 psi

2.5 inch sanitary grade

(1 element)


Side port

400 psi

Coupling, Groove Pipe and Blind Cap

S30 SS Flexible Coupling Clamp

Note: SS304, SS316L, SS2205, SS2507, four materials available.

S80 SS Flexible Coupling Clamp

Nomin	al size	Pipe O.D.		Working Pressure		
DN	in	mm	in	psi	bar	
DN20	0.75"	26.9	1.050	1200	83	
DN25	1"	33.7	1.315	1200	83	
DN32	1.25"	42.4	1.660	1200	83	
DN40	1.5"	48.3	1.900	1200	83	
DN50	2"	60.3	2.375	1200	83	
DN65	2.5"	73	2.875	1200	83	
DN80	3"	76.1	3.000	1200	83	
DN80	3"	88.9	3.500	1200	83	
DN100	4"	114.3	4.500	1200	83	

Note: SS304, SS316L, SS2205, SS2507, four materials available.

\$160 SS Flexible Coupling Clamp

						,							
Nomin	nal size	Pipe	O.D.	Working Pressure		Working Pressure		Nominal size		Pipe O.D.		Working Pressure	
DN	in	mm	in	psi	bar	DN	in	mm	in	psi	bar		
DN20	0.75"	26.9	1.050	2322	160	DN80	3"	76.1	3.000	2322	160		
DN25	1"	33.7	1.315	2322	160	DN80	3"	88.9	3.500	2322	160		
DN32	1.25"	42.4	1.660	2322	160	DN100	4"	114.3	4.500	2322	160		
DN40	1.5"	48.3	1.900	2322	160	DN125	5"	139.7	5.500	2322	160		
DN50	2"	60.3	2.375	2322	160	DN150	6"	168.3	6.625	2322	160		
DN65	2.5"	73.0	2.875	2322	160	DN200	8"	219.1	8.625	2322	160		

Note: SS304, SS316L, SS2205, SS2507, four materials available.

Coupling, Groove Pipe and Blind Cap

G30 SS Rigid Coupling Clamp

Nomin	al size	Pipe	O.D.	Working Pressure		
DN	in	mm	in	psi	bar	
DN100	4"	114.3	4.500	600	42	
DN125	5"	139.7	5.500	600	42	
DN150	6"	168.3	6.625	600	42	
DN200	8"	219.1	8.625	600	42	
DN250	10"	273.0	10.750	600	42	

Note: SS304, SS316L, SS2205, SS2507, four materials available.

C Ductile Iron Flexible Coupling Clamp

Nomin	al size	size Pipe O.D.		Working	Pressure
DN	in	mm	in	psi	bar
DN25	1"	33.7	1.315	600	42
DN32	1.25"	42.4	1.660	600	42
DN40	1.5"	48.3	1.900	600	42
DN50	2"	60.3	2.375	600	42
DN65	2.5"	73.0	2.875	600	42
DN80	3"	76.1	3.000	600	42
DN80	3"	88.9	3.500	600	42
DN100	4"	114.3	4.500	500	35
DN125	5"	140.0	5.511	450	31
DN150	6"	168.3	6.625	450	31
DN200	8"	219.1	8.625	450	31
DN250	10"	273.0	10.750	350	25
DN300	12"	323.9	12.750	350	25

Process Automation Instruments

CE

Recorders;

Water Quality Analyzers;

Flow meter;

Pressure Transmitters and Level Transmitters;

Temperature Sensors;

Signal Isolator

Create Water Quality Online Analysis Instruments

CE

Conductivity/Resistivity/TDS Online Controller Series;

pH/ORP Online Meter Series;

Flow Meter Series;

RO Controller Series;

Transmitter Series;

Data Acquisition Terminal;

IOT Terminal Series;

Online Analysis System Integration.

Imported Brand Instruments

Silt Density Index (SDI) Measurement

SPEARS Simple SDI

Filter Membrane

Water quality analysis instruments

Orion

Automatic Control

Ī

Siemens Automatic Control

Rockwell Automatic Control

Snowate Dosing Pumps

CE

High-precision digital dosing pump with interlock function, stop function, and alarm output;

The maximum frequency can reach 360 strokes per minute for stable operation and more precise dosing;

The entire series is equipped with a stroke adjustment knob, allowing adjustable discharge volume per stroke;

Modular compartment design ensures no interference between modules and excellent heat dissipation.

Seko Dosing Pumps

CE

Seko is an Italian brand with a wide range of flow and pressure capacities. It features low maintenance costs and long diaphragm lifespan;

It can be widely applied in industries such as oil, gas, food, beverage, and water treatment.

UV Water Purifier and Sterilizer

Ozone Generator

CE

Air Feeding Ozone Generator

0.01 / 0.015 / 0.02 / 0.03 / 0.05 / 0.06 / 0.08 / 0.1 / 0.15 / 0.2 / 0.5 / 0.8 / 1 / 2 / 3 / 4 / 5 / 8 / 10 Kg/h (Small type); 15 / 20 / 25 / 30 Kg/h (Medium type)

Oxygen Feeding Ozone Generator

0.01 / 0.015 / 0.02 / 0.03 / 0.05 / 0.06 / 0.08 / 0.1 / 0.15 / 0.2 / 0.5 / 0.8 / 1 / 2 / 3 / 4 / 5 / 8 / 10 Kg/h (Small type) 15 / 20 / 25 / 30 / 40 / 50 Kg/h (Medium type) 60 / 80 / 100 / 120 / 150 Kg/h (Large type)

Ozone Water System:

10 / 20 / 30 g/h

etc.

Applied in fields such as water

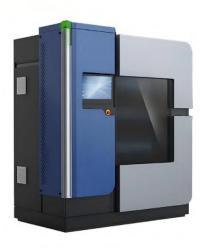
food processing, aquaculture,

treatment, swimming pools,

Sodium Hypochlorite Generator

The sodium hypochlorite generator produces low-concentration sodium hypochlorite from brine via diaphragm-free electrolysis, suitable for various chlorinated water treatment applications.

Carbon Steel Powder-Coated Shell Series:


50g / 100g / 200g / 300g / 400g / 500g / 800g / 1kg / 1.5kg / 2kg / 3kg / 4kg / 5kg / 6kg / 7kg / 8kg / 9kg / 10kg / 12.5kg / 15kg / 20kg / 30kg / 40kg

PVC Frame Series: 50g / 100g / 200g / 300g / 400g / 500g

Simplified PVC Shell Series: 50g / 100g / 200g

EDI (Electrodeionization)

Electrodeionization (EDI) is a chemical-free water purification technology that uses ion exchange and electricity to produce ultrapure water for industrial applications.

Replaces Siemens IONPURE series: 0.44 / 0.5 / 1.0 / 2.0 / 2.5 / 3.0 / 3.3 / 5.0 / 7.0 / 8.0 m³/h

Replaces GE E-CELL series: 3.0 / 5.0 m³/h

Micro EDI Stack for Laboratory Use series: $50 / 100 / 200 / 250 \, l/h$

Plastic Valves and Pipe Fittings

ϵ

Ball valves

Butterfly valves

Diaphragm Valves

Check Valves

Foot Valves

Plastic pipe and pipe fittings

Metal Valves for Pipelines

Pressure Gauges

Diameters: 1.5", 2", 2.5", 4".

Connection: Bottom, Back, front flange.

Unit: MPa/psi, bar/psi, kg/cm² etc. Shell Material: SS304, SS316.

Port Thread: ZG, NPT etc.

Port Material: Copper nickel plated, stainless steel, brass.

Solenoid Valve

Flow Meter

Snowate can provide plastic tube flow meter, panel type flow meter, electromagnetic flow meter, metal tube float flow meter and etc.

Stainless Steel Pipes and Fittings

Stainless Steel Buttwelding Pipe Fittings

Stainless Steel Pipes and Fittings

 ϵ

Stainless Steel Threaded Pipe Fittings

Moving Bed Biofilm Reactor (MBBR)

MBBR Bio Floating Filter Media

MBBR Biochips

Lamella Tube Media

MBBR Bio block

Sewage Treatment Equipment

High-Pressure Blower

Roots Blower

Air Compressor

Plate Aerator

Dome Aerator

Tube Aerator

SS and Carbon Steel Tanks

Product Application Cases

Our Clients

AQUAPHOR® water filters

Metito

AQUAPHOR International OÜ

BWT

Gradiant

Water and Environment Technologies Company - WETICO

BWT

If you are in industrial water treatment industry...
If you want to optimize your purchase process...
If you want to seeking a long-term strategic partner in China.

We will win together!

Hengshui Snowate Environmental Technology Co., Ltd.

Address Hebei • China

Website www.snowate.com

E-mail snow@snowate.com

Telphone +86-15030811699 (WhatsApp, WeChat)

WeChat WhatsApp

